High-Performance Computing for Machine Learning at Scale
High-Performance Computing (HPC) provides the computational power needed to tackle the most demanding machine learning challenges. This guide explores how to leverage HPC resources effectively.
Understanding HPC Architecture
Cluster Components
Modern HPC clusters consist of:
Node Types
Check available partitions
sinfo
View node specifications
scontrol show nodes
Parallel Computing Paradigms
Data Parallelism
Distribute data across multiple processors:
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
Initialize process group
dist.init_process_group(backend='nccl',
init_method='env://')
Wrap model for distributed training
model = DistributedDataParallel(model)
Model Parallelism
Split large models across devices:
Pipeline parallelism example
class PipelineModel(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(1000, 1000).to('cuda:0')
self.layer2 = nn.Linear(1000, 1000).to('cuda:1')
def forward(self, x):
x = self.layer1(x.to('cuda:0'))
x = self.layer2(x.to('cuda:1'))
return x
Job Scheduling and Resource Management
Slurm Job Scripts
#!/bin/bash
#SBATCH --job-name=ml_training
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:8
#SBATCH --time=24:00:00
#SBATCH --partition=gpu
module load cuda/11.8
module load python/3.9
srun python distributed_training.py
Resource Optimization
Storage and I/O Optimization
Parallel File Systems
Optimize data loading for HPC
import torch
from torch.utils.data import DataLoader
Use multiple workers for data loading
dataloader = DataLoader(
dataset,
batch_size=32,
num_workers=8, # Match CPU cores
pin_memory=True,
persistent_workers=True
)
Data Staging Strategies
Performance Monitoring
System Metrics
Monitor GPU utilization
nvidia-smi dmon
Check network utilization
iftop -i ib0
Monitor file system performance
iostat -x 1
Application Profiling
PyTorch profiler for HPC
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
schedule=torch.profiler.schedule(wait=1, warmup=1, active=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler('./log')
) as prof:
for step, batch in enumerate(dataloader):
# Training step
prof.step()
Best Practices for HPC ML
HPC enables researchers to tackle previously impossible problems by providing massive computational resources and optimized software stacks.