High-Performance Computing for Machine Learning at Scale
High-Performance Computing (HPC) provides the computational power needed to tackle the most demanding machine learning challenges. This guide explores how to leverage HPC resources effectively.
Understanding HPC Architecture
Cluster Components
Modern HPC clusters consist of:
- Compute Nodes: Individual servers with CPUs/GPUs
- Interconnect: High-speed network (InfiniBand, Ethernet)
- Storage: Parallel file systems (Lustre, GPFS)
- Scheduler: Job management (Slurm, PBS)
Node Types
# Check available partitions
sinfo
# View node specifications
scontrol show nodes
Parallel Computing Paradigms
Data Parallelism
Distribute data across multiple processors:
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
# Initialize process group
dist.init_process_group(backend='nccl',
init_method='env://')
# Wrap model for distributed training
model = DistributedDataParallel(model)
Model Parallelism
Split large models across devices:
# Pipeline parallelism example
class PipelineModel(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(1000, 1000).to('cuda:0')
self.layer2 = nn.Linear(1000, 1000).to('cuda:1')
def forward(self, x):
x = self.layer1(x.to('cuda:0'))
x = self.layer2(x.to('cuda:1'))
return x
Job Scheduling and Resource Management
Slurm Job Scripts
#!/bin/bash
#SBATCH --job-name=ml_training
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:8
#SBATCH --time=24:00:00
#SBATCH --partition=gpu
module load cuda/11.8
module load python/3.9
srun python distributed_training.py
Resource Optimization
- CPU Binding: Pin processes to specific cores
- Memory Allocation: Request appropriate memory per task
- GPU Scheduling: Optimize GPU utilization across nodes
Storage and I/O Optimization
Parallel File Systems
# Optimize data loading for HPC
import torch
from torch.utils.data import DataLoader
# Use multiple workers for data loading
dataloader = DataLoader(
dataset,
batch_size=32,
num_workers=8, # Match CPU cores
pin_memory=True,
persistent_workers=True
)
Data Staging Strategies
- Local SSD: Stage frequently accessed data
- Burst Buffers: High-speed intermediate storage
- Prefetching: Load next batch while processing current
Performance Monitoring
System Metrics
# Monitor GPU utilization
nvidia-smi dmon
# Check network utilization
iftop -i ib0
# Monitor file system performance
iostat -x 1
Application Profiling
# PyTorch profiler for HPC
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
schedule=torch.profiler.schedule(wait=1, warmup=1, active=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler('./log')
) as prof:
for step, batch in enumerate(dataloader):
# Training step
prof.step()
Best Practices for HPC ML
- Scalability Testing: Verify performance scales with resources
- Checkpointing: Save model state for fault tolerance
- Resource Monitoring: Track utilization and bottlenecks
- Communication Optimization: Minimize inter-node communication
HPC enables researchers to tackle previously impossible problems by providing massive computational resources and optimized software stacks.