HPCMachine LearningParallel Computing

High-Performance Computing for Machine Learning at Scale

Discover how HPC clusters and parallel computing techniques can accelerate your machine learning workflows.

D
Dr. Michael Rodriguez
15 min read
High-Performance Computing for Machine Learning at Scale

High-Performance Computing for Machine Learning at Scale

High-Performance Computing (HPC) provides the computational power needed to tackle the most demanding machine learning challenges. This guide explores how to leverage HPC resources effectively.

Understanding HPC Architecture

Cluster Components

Modern HPC clusters consist of:

  • Compute Nodes: Individual servers with CPUs/GPUs
  • Interconnect: High-speed network (InfiniBand, Ethernet)
  • Storage: Parallel file systems (Lustre, GPFS)
  • Scheduler: Job management (Slurm, PBS)
  • Node Types

    Check available partitions

    sinfo

    View node specifications

    scontrol show nodes

    Parallel Computing Paradigms

    Data Parallelism

    Distribute data across multiple processors:

    import torch.distributed as dist
    

    from torch.nn.parallel import DistributedDataParallel

    Initialize process group

    dist.init_process_group(backend='nccl',

    init_method='env://')

    Wrap model for distributed training

    model = DistributedDataParallel(model)

    Model Parallelism

    Split large models across devices:

    Pipeline parallelism example

    class PipelineModel(nn.Module):

    def __init__(self):

    super().__init__()

    self.layer1 = nn.Linear(1000, 1000).to('cuda:0')

    self.layer2 = nn.Linear(1000, 1000).to('cuda:1')

    def forward(self, x):

    x = self.layer1(x.to('cuda:0'))

    x = self.layer2(x.to('cuda:1'))

    return x

    Job Scheduling and Resource Management

    Slurm Job Scripts

    #!/bin/bash
    

    #SBATCH --job-name=ml_training

    #SBATCH --nodes=4

    #SBATCH --ntasks-per-node=8

    #SBATCH --gres=gpu:8

    #SBATCH --time=24:00:00

    #SBATCH --partition=gpu

    module load cuda/11.8

    module load python/3.9

    srun python distributed_training.py

    Resource Optimization

  • CPU Binding: Pin processes to specific cores
  • Memory Allocation: Request appropriate memory per task
  • GPU Scheduling: Optimize GPU utilization across nodes
  • Storage and I/O Optimization

    Parallel File Systems

    Optimize data loading for HPC

    import torch

    from torch.utils.data import DataLoader

    Use multiple workers for data loading

    dataloader = DataLoader(

    dataset,

    batch_size=32,

    num_workers=8, # Match CPU cores

    pin_memory=True,

    persistent_workers=True

    )

    Data Staging Strategies

  • 1. Local SSD: Stage frequently accessed data
  • 2. Burst Buffers: High-speed intermediate storage
  • 3. Prefetching: Load next batch while processing current
  • Performance Monitoring

    System Metrics

    Monitor GPU utilization

    nvidia-smi dmon

    Check network utilization

    iftop -i ib0

    Monitor file system performance

    iostat -x 1

    Application Profiling

    PyTorch profiler for HPC

    with torch.profiler.profile(

    activities=[

    torch.profiler.ProfilerActivity.CPU,

    torch.profiler.ProfilerActivity.CUDA,

    ],

    schedule=torch.profiler.schedule(wait=1, warmup=1, active=3),

    on_trace_ready=torch.profiler.tensorboard_trace_handler('./log')

    ) as prof:

    for step, batch in enumerate(dataloader):

    # Training step

    prof.step()

    Best Practices for HPC ML

  • 1. Scalability Testing: Verify performance scales with resources
  • 2. Checkpointing: Save model state for fault tolerance
  • 3. Resource Monitoring: Track utilization and bottlenecks
  • 4. Communication Optimization: Minimize inter-node communication
  • HPC enables researchers to tackle previously impossible problems by providing massive computational resources and optimized software stacks.